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In  studying the stability of the boundary layer with surface mass injection, a 
generalized version of the Orr-Sommerfeld equation was derived which takes 
account of the transverse velocity component in the mainflow. The new terms 
in the generalized Orr-Sommerfeld equation are inversely proportional to the 
Reynolds number. The resulting eigenvalue problem was solved numerically for 
a wide range of values of the mass injection intensity. It was found that the 
critical Reynolds number (based on the distance from the leading edge) de- 
creases with increasing mass injection. The deviations between the critical 
Reynolds numbers from the generalized and conventional Om-Sommerfeld 
equations have a different sign a t  low injection intensities from that at high 
injection intensities. 

Introduction 
The conventional formulation of the linear theory of hydrodynamic stability, 

leading to the Orr-Sommerfeld equation, is based on a model which sets aside 
the transverse velocity component in the maidow. It is assumed that the main- 
flow can be regarded as a parallel flow consisting solely of the streamwise velocity 
component, with the other velocity components being zero. Such a model is 
fulfilled exactly in fully developed duct flows, whereas for boundary layers it is 
an approximation. 

The characterization of a boundary-layer flow as a uni-component flow may 
be intuitively acceptable when there is no mass transfer at the bounding surface. 
However, in the presence of surface mass transfer, the magnitude of the trans- 
verse velocity may be substantially augmented, so that a more detailed analysis 
of the contribution of the transverse velocity to the stability problem is 
warranted. 

In  the present paper, a generalized version of the Orr-Sommerfeld equation 
is derived which takes account of the transverse velocity component in the main- 
flow. The derivation lifts the assumption of a strictly parallel mainflow and 
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utilizes only the magnitude ordering of boundary-layer theory. The resulting 
governing equation for the disturbance amplitude resembles the Orr-Sommerfeld 
equation, but cont'ains additional terms involving the mainflow transverse 
velocity and its second derivative, all such terms being inversely proportional to 
the Reynolds number. The influence of the new terms should therefore be accen- 
tuated in cases in which the critical Reynolds number is relatively small. For 
surface mass transfer, it is known that injection decreases the critical Reynolds 
number whereas suction has the opposite effect. 

Solutions of the aforementioned generalized Orr-Sommerfeld equa,tion were 
carried out for the boundary layer on a flat plate. I n  view of the foregoing, 
consideration was focused on the case of mass injection a t  the plate surface. A 
wide range of injection velocities was investigated. The solutions were carried 
out using an extension of the finite-difference method of Thomas (1953), the 
extension being necessitated by the presence of the third derivative of the dis- 
turbance amplitude in the generaIized Orr-Sommerfeld equation. Numerical 
results are presented for the critical Reynolds numbers and for the neutral 
stability curves. This information is compared with corresponding results from 
the conventional Orr-Sommerfeld equation, where the influence of the transverse 
velocity is neglected. 

The generalized Orr-Sommerfeld equation, which takes account of the main- 
flow transverse velocity, reduces to a somewhat simpler form for the asymptotic 
suction boundary layer. I n  this relatively simple case, the mainflow velocity 
field is independent of the streamwise co-ordinate and the transverse velocity is 
constant everywhere. The reduced form of the generalized Orr-Sommerfeld 
equation is stated by Hughes & Reid (1965) in their definitive treatment of the 
asymptotic suction boundary layer and by Alekseev & Korotkin (1966). Since 
the asymptotic suction boundary layer is characterized by a very high critical 
Reynolds number, the term involving the transverse velocity plays a negligible 
role. 

The generalized Orr-Sommerfeld equation 
The starting point of the analysis is the Navier-Stokes equations for incom- 

pressible two-dimensional time-dependent fluid motion. Consider a boundary- 
layer flow with velocity components Q and 6 in the streamwise and transverse 
directions (x and y, respectively) and with static pressure distribution @. If u, v, p 
denote mainflow quantities and u', v', p' are the corresponding disturbances, 
then 

Substitution of (1) into the Navier-Stokes equations, followed by subtraction 
of the mainflow and neglect of squares of disturbance quantities, leads to  

Q = u+u', 6 = v+v', fi = p + p ' .  (1 )  
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Equations (2) and (3) retain all of the terms involving aulax, v, av/ax, and av/ay 
that are normally deleted in the derivation of the conventional Orr-Sommerfeld 
equation. 

The pressure p' may now be eliminated from (2) and (3) by cross differentiation 
and subtraction. The resulting equation is then simplified by noting that 
h / a x  + av/ay = 0 and that a2u/ax2 $ a2u/ay2, a2v/ax2 < a2v/ay2. This magnitude 
ordering of the second derivatives is precisely that which is used in the analysis 
of the mainflow, so that no new approximations are being introduced here. 
According to boundary-layer theory, the second derivatives that are deleted are 
of order s2 (6 = boundary-layer thickness) compared with those that are re- 
tained. The equation resulting from the operations just described is 

a a w  a2u' a aw aw 
(ay (8x2 ay2 ) ax (ax2 +p)]. = v  - -+- -- - (4) 

Compared with the corresponding stage in the derivation of the conventional 
Orr-Sommerfeld equation, three additional terms involving v and a2v/ap2 may 
be identified in (4). 

The next step is to evaluate the perturbation velocities via the continuity 
relations U' = a$'/ay and v' = - a$'/ax. $' is the stream function of the distur- 
bance, which is assumed to have the form of a plane wave of amplitude q5 travel- 
ling in the streamwise direction 

$' (x ,p , t )  = q5(y)exp[ia'(x-c't)]. (5) 

Upon substituting u' and v' from (5) into (4), there emerges a differential equation 
for the disturbance amplitude q5 which is fourth order in y, with all derivatives 
in x dropping out. 

To proceed, it is convenient to scale y by the local boundary-layer thickness 
6 corresponding to u/u, = 1 - B (u, is the free stream velocity; 8 is a small positive 
number, taken as 0.001 in the present study). The scaled y co-ordinate and other 
relevant dimensionless quantities are introduced according to the definitions 

Y = y / s ,  ~n = an/aYn, 
= u/um, V = v/u,, c = c'/u,, a = a's, R = u,&/v, (6b) 

with the result that 

i 
aR 

=-- ( 0 4  - 2 m 2  + a*) +. (7 

Equation (7) differs from the conventional Orr-Sommerfeld equation by the 
presence of the rightmost group of terms on the left-hand aide. As pointed out 
by Reid (1965), the retention of the transverse velocity terms requires, for 
consistency, that the terms ( - 2a2D2 + a4) q5 also be retained. The latter terms 
are sometimes deleted in the asymptotic-type analysis of the conventional Orr- 
Sommerfeld equation. 
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The terms in (7) involving U ,  V and their derivatives will now be evaluated 
from the mainflow solution. From boundary-layer theory, it is well established 
that for laminar flow over a flat plate in the presence of surface mass transfer, 
similarity solutions are possible only when the injection or suction velocity vw 
varies with the axial co-ordinate x as 

vw/u, = - $(v/u,x)*F(O), (8) 

where F(0)  is a prescribed constant whose magnitude specifies the intensity of 
the mass transfer. Positive and negative values of F(0)  correspond, respectively, 
to suction and injection, while F(0)  = 0 for an impermeable boundary. For the 
similarity solution, the utilization of a similarity variable 7 and a reduced stream 
function F(7) ,  respectively defined as 

7 = Y ( ~ m l 4 4  F ( r )  = wwm)-*, (9) 

leads to the Blasius equation 

with boundary conditions F = constant and dF/dq = 0 at 7 = 0, and dF/dy = 1 
as 7 - t ~ .  

The solution for F and its derivatives depends parametrically on P(0) and is 
readily found by numerical techniques. From such solutions, all the information 
needed for the stability analysis can be extracted. The boundary-layer thickness 
6, defined as the distance from the plate surface where u/u, = 0.9990, is given by 

= 78 (J4Um)4 (11) 

where 7 8  corresponds to the 7 value at which dF/dr] = 0.9990. Furthermore, the 
maidow velocities and velocity derivatives that appear in the generalized Orr- 
Sommerfeld equation (7) can be represented as 

in which 

In view of the two right-hand members of (12a), it is seen that the new terms 
in the generalized Orr-Sommerfeld equation (7) are proportional to 1/R. Con- 
sequently, the influence of the transverse velocity should be most strongly felt 
in flows in which the critical Reynolds number is relatively low. 

The disturbance amplitude # is governed by (7), supplemented by (12a) and 
(12b). The disturbance velocities u‘ and v’ must vanish at the plate surface and 
in the free stream outside the boundary layer. In  terms of # these boundary 
conditions can be expressed as 

$ = D $ = O  at Y = O ,  (13) 

#-exp(-aY)  for Y 1, (14) 

where (14) is a solution of the inviscid form of (7). 
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The complex wave velocity c appearing in (7) is made up of components c,, 
and cg. The flow is stable, neutrally stable, or unstable relative to the disturbance 
depending on whether ci is less than, equal to, or greater than zero. The mathe- 
matical system consisting of (7), (13) and (14) is an eigenvalue problem which 
gives the relationship among a, c and R. 

Solution of the eigenvalue problem 

rephrase (7),  evaluated using (12a) and (12b), in the form 
In approaching the solution of the eigenvalue problem, it is convenient to 

where 
aR dF A - - Q ,  A , = -  -- 

1 -  z ( d q  c)-2a21 

A finite-difference technique was employed in solving the eigenvalue problem 
defined by (15), (14) and (13). 

For finite-difference solutions of the conventional Om-Sommerfeld equation, 
it has been found advantageous to formulate the difference equations by em- 
ploying the transformation of Thomas (1953). The particular usefulness of this 
transformation lies in the small truncation errors that result from the dis- 
cretization. The truncation error is relatively large only for the third derivative, 
D3$, and in the past this has not been a drawback since the conventional Orr- 
Sommerfeld equation does not contain the third derivative. On the other hand, 
the third derivative does appear in the generalized Orr-Sommerfeld equation 
and steps must be taken to remove it before going ahead with the difference 
formulation. 

To proceed, a transformation to a new dependent variable 0 is made following 
a suggestion of Fu (1967). 

$ = oexp [ -zf, 1 y  A , I Y ] .  

After a lengthy derivation, (15) transforms into 

where 
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8 = D O = O  at Y = O ,  (21) 

8 N exp[-(a-4A1) Y ]  for Y 2 1. (22) 

Since (18) does not contain the third derivative, Thomas's transformation 
can be employed to formulate the difference equations. The region 0 < Y 6 1 
was subdivided into N equal intervals and the difference equations applied at  
( N +  1) discrete points, with special equations for the boundary points Y = 0 
and Y = 1. This gives rise to a set of ( N +  1) linear homogeneous complex alge- 
braic equations. The requirement for a solution to exist is that the determinant 
$3 of the coefficient matrix be zero, which leads to a secular equation 

f (a, C, R) = 0. (23) 

For given a and R, the value of c satisfying (23) was determined by an iteration 
procedure in conjunction with the root finder technique of Muller (1956). 

The objective of the calculations was to map out neutral stability curves and 
determine critical Reynolds numbers for a range of surface mass injection 
intensities P(0) extending from zero (impermeable surface) to strong injection. 
The first case to be investigated was the impermeable surface (P(0) = 0). In  
this case, the influence of the transverse velocity is small and the initial values 
for the iteration procedure were taken from available solutions of the conven- 
tional Orr-Sommerfeld equation. Once the neutral curve and critical Reynolds 
number for P(0) = 0 were determined, then calculations for P(0) = - 0.2 were 
initiated, with the f i s t  input taken from the P(0) = 0 results; and so forth to 
P(0) = -1.0. 

A step size AY of 0.01 for the finite-difference formulation was found to be 
adequate for all cases. The calculations were performed with double precision 
arithmetic on an IBM 360/50 digital computer. 

Results and discussion 
The neutral stability curves were mapped out in terms of a Reynolds number 

R, and a wave-number a,, which are based on the displacement thickness 8,. 
These quantities are defined as 

R, = u,S,/V, a, = a'd',, (24) 

Representative neutral stability curves, corresponding to F(0)  = 0, - 0-4, - 0.8, 
and - 1.0 are presented in figure 1. Neutral stability curves were determined for 
others F(0)  values, but are not included in order to preserve clarity. 

Inspection of the figure indicates that as the injection intensity IP(0)l in- 
creases from zero, there is a marked leftward shift of the curves toward lower 
values of R,, suggesting a destabilization of the mainflow. For larger injection 
intensities, however, the trend toward lesser stability appears to reverse. 



Linear stability theory 747 

Further consideration of this apparent reversal will be deferred until later when 
the critical Reynolds numbers are presented. 

Each neutral stability curve partitions the R,, a, plane into two regions. In  
the region enclosed within the curve, ci > 0 and disturbances are amplified, 
while outside the curve c, < 0 and disturbances are damped. The figure shows 
that the height of the region of destabilization is enlarged as the injection inten- 
sity increases. It is also interesting to observe that for mass injection, i.e. F(0)  < 0, 

1.5 

1 .o 

0.5 

0 
50 102 103 104 

R l  

FIGVRE 1. Representative neutral stability curves. 

the upper branches of the neutral stability curves appear to tend to non-zero 
asymptotic values for large R,. Therefore, even for R, + 00, there exists a finite 
range of wave-numbers in which disturbances are amplified. A similar behaviour 
occurs for boundary layers in adverse pressure gradients. In  contrast, both 
branches of the neutral stability curve for the impermeable plate are asymptotic 
to zero as R, approaches infinity. 

A rather unexpected finding was encountered during the course of the com- 
putations for F(0)  = - 1, which represents the largest injection intensity in- 
vestigated. As shown in the figure, there are two lower branches of the neutral 
stability curve. One of these lower branches is a continuation of the upper 
branch; the other lower branch disappears at  values of R, below 350. Along the 
former, c, increases with increasing R,, whereas there is an opposite variation 
along the latter. The significance of these dual lower branches remains uncertain. 
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Critical Reynolds numbers were determined from careful examination of 
neutral stability curves for eight values of the injection intensity F(0)  between 
0 and - 1. These critical values are denoted by (Rl)c. In  addition, critical values 
of the Reynolds number Rx based on the streamwise co-ordinate x were also 
evaluated by means of the relation 

(Rx)! = (RJCPl (UWI4t (26) 

where R, = u,x/V. (27) 

The numerical results for (Bl)e and (Bx)c are listed in table 1 and are plotted in 
figure 2. 

F (0) 
0 

- 0.2 
- 0.4 
- 0.6 
- 0.7 
- 0.8 
- 0.9 
- 1.0 

(RAG 
510 
259 
149 
98 
89 
86 
86 
89 

296-4 
132.2 
65.7 
36.5 
30.0 
25.7 
22-9 
20.3 

@l)C 

0.305 
0.383 
0.472 
0.630 
0.737 
0.855 
0.962 
0.990 

( C A  

0-402 
0.457 
0.505 
0.550 
0.566 
0-578 
0.589 
0.619 

yc 81 ( U , / V d  

0-204 1.7208 
0.257 1.9587 
0-315 2.2674 
0-379 2.6881 
0.411 2.9647 
0.444 3.3099 
0.480 3.7602 
0.531 4.3907 

8, ( U , / V X ) +  

0.6641 
0.7233 
0-7912 
0.8697 
0.9138 
0.9616 
1.0138 
1.0710 

TABLE 1. Stability characteristics and related information 

H 
2.5911 
2.7080 
2-8658 
3.0907 
3.2443 
3-44 1 9 
3.7090 
4.0995 

- 
- 
- 
- 

- 1000 - - 
- 
- 
- 500 2 

- & 

\ 

10 - - - - 
- 
- . . . -  . \ 

. 
5 .  50 I I I I I ' I ' ' 

0 0.2 0.4 0.6 0.8 1 .O 

FIGURE 2. Variation of the critical Reynolds number with mass injection intensity. -, 
generalized Orr-Sommerfeld equation ; - - - , conventional Orr-Sommerfeld equation. 
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I n  the figure, the solid curves correspond to the solutions of the generalized 
Orr-Sommerfeld equation obtained during this investigation, whereas the dashed 
lines represent results from the conventional Orr-Sommerfeld equation (Tsou & 
Sparrow 1970). The results for (BJC are referred to the left-hand ordinate and 
those for 

Of the two representations of the stability limit, that is, (RJC and (BJC, the 
former is believed to be the more physically relevant. From figure 2 it is seen 
that ( R.JC decreases monotonically as the injection intensity increases, for both 

to the right-hand ordinate. 

50 102 103 1 o4 
R, 

FIGURE 3. Comparison of neutral stability curves. -, generalized Orr-Sommerfeld 
equation ; - - - , conventional Om-Sommerfeld equation. 

the solutions of the generalized and conventional Orr-Sommerfeld equations. 
At small and intermediate injection intensities, the (BJC from the generalized 
Orr-Sommerfeld equation lie below those given by the conventional Orr- 
Sommerfeld equation, whereas the opposite behaviour is in evidence at the 
larger injection intensities. Thus, the role of the newly accounted terms involving 
the mainflow transverse velocity is different depending on the strength of the 
surface mass transfer. 

With respect to the behaviour of the critical Reynolds number (RJc, the 
results from the generalized Orr-Sommerfeld equation are seen to decrease with 
increasing injection intensity, attain a minimum, and then to increase slightly 
at the larger injection intensities. Thus, the trends in (RJC and appear to 
be at variance at the larger injection intensities. As indicated earlier, (RJC is 
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believed to be the more relevant stability parameter, and its monotonic decrease 
with increasing blowing intensity is accepted as indicative of the effect of surface 
mass injection. The (A!& results from the conventional Orr-Sommerfeld equa- 
tion decrease monotonically with injection intensity. 

In  addition to the Reynolds numbers (RJC and (A!& table 1 lists the values 
of the wave-number a1 and wave velocity cr at the critical condition, and the 
location of the critical layer K. Both the wave-number and wave velocity cor- 
responding to the critical condition increase with increasing injection intensity, 
The critical layer location Y,, defined as the distance ylS from the wall a t  which 
the local mainflow velocity U( = u/um) is equal to (c,.)~, is also greater a t  higher 
injection intensities. The last three columns of table 1 contain information on 
the displacement thickness S,, momentum thickness S,, and the ratio H = Sl/S,. 

A representative comparison of neutral stability curves from the solutions of 
the generalized and conventional Orr-Sommerfeld equations is made in figure 3, 
the results for the latter being taken from Tsou & Sparrow (1970). For a given 
injection intensity F(O), the greatest deviations between the solid and dashed 
curves occur in the nose region, that is, where the Reynolds numbers are lowest. 
In  the nose region, for low and moderate injection intensities, the dashed curves 
lie to the right of the solid curves. A reversed positioning is in evidence at  the 
higher injection intensities.t 
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